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Abstract

Current approaches to artificial general intelligence (AGI) focus primarily on scaling large
language models (LLMs) through increased parameters, training data, and computational
resources. However, this paradigm faces fundamental limitations: energy consumption
required for training grows exponentially, training cycles remain static, and systems lack
the adaptive plasticity that characterizes natural intelligence. This paper proposes an
alternative architecture inspired by evolutionary neuroscience: a modular Al system with
specialized components coordinated by a dynamic executive function, all designed for
continuous adaptation rather than periodic retraining.

Drawing on the Evolutionary Processing Unit (EPU) framework, which demonstrates that
evolution achieved intelligence through architectural innovation rather than raw
computational scale, we argue that the path to AGI, or perhaps more achievable,
Augmented Human Intelligence (AHI), requires fundamentally different approaches that
mirror the distributed, plastic architecture of the Biological Processing Unit (BPU). We
propose four core principles: modular orchestration, causal reasoning, continuous
plasticity, and resource-constrained attention allocation. Drawing on cognitive science,
neurobiology, and decision theory, we present a conceptual framework and phased
development roadmap for building Al systems that enhance rather than merely replicate
human intelligence. The key contributions of this architecture are its dynamic executive
orchestration, multi-level continuous plasticity, and built-in mechanisms for bias
correction and value alignment, offering a more efficient and robust path beyond pure
scaling."

This paper is part of a four-paper series on biologically inspired modular Al and attention.

1. Introduction: The Scaling Paradox

The quest for AGIl has become synonymous with scale. Each generation of large language
models grows larger, consumes more energy, and requires longer training cycles. However,
despite remarkable achievements, current LLMs remain fundamentally limited in their
ability to reason causally, adapt continuously, or exhibit the kind of robust intelligence that
emerges from biological evolution.



Consider the Evolutionary Processing Unit (EPU) framework [1]: the cumulative
computational effort of human evolution represents approximately 5.5 x 10738 “brain-
equivalent FLOPS.” Even the most powerful supercomputer would require roughly 10
trillion years, approximately 1,000 times the age of the universe, to match this
accumulated computational experience [1].

This suggests that brute-force scaling is not just inefficient but fundamentally misguided.
Evolution did not create intelligence through raw computational power; it developed
specialized, interconnected systems that could learn, adapt, and reason through
experience. Suppose we want to build AGI, or the more immediately achievable goal of
seamless human-Al collaboration, known as Augmented Human Intelligence (AHI). In that
case, we must understand how the Evolutionary Processing Unit (EPU) developed today’s
Biological Processing Unit (BPU) [1].

A skeptic might question this biological analogy, arguing that comparing wetware to
software constitutes a category error. We acknowledge the profound differences in
substrate and implementation. However, our argument is not for biomimicry in its details,
but for the adoption of evolved computational principles. Both the brain and artificial
systems are, at their core, information processing systems operating under severe
resource constraints. The brain faces metabolic and spatial limits; Al systems face
computational and energy budgets. The EPU's four-billion-year optimization process
discovered architectural strategies: modularity, plasticity, and selective attention that are
uniquely effective for managing these universal constraints. We contend that these
strategies are substrate-independent and represent a more promising path to robust
intelligence than the continued inflation of parameters within a single, monolithic
architecture.

This paper addresses this challenge by proposing a novel modular architecture for
adaptive Al, directly inspired by the evolutionary principles of the EPU and the orchestrated
modularity of the BPU. Our primary contribution is a comprehensive framework built on
four core principles:

1. Executive Orchestration: A dynamic, meta-learning executive system, analogous
to the prefrontal cortex, that coordinates specialized modules contextually, rather
than relying on uniform processing.

2. Multi-Level Plasticity: A continuous learning mechanism operating at synaptic,
structural, and executive levels, enabling lifelong adaptation without catastrophic
forgetting or the need for periodic retraining.

3. Architectural Bias Correction: The explicit design of modules (e.g., for Causal
Reasoning and Value Assessment) to identify and correct for known systemic
biases in human cognition, positioning Al as a complement to human intelligence.

4. Integrated Value Alignment: The incorporation of ethical reasoning and value
trade-off analysis as a first-class architectural component, ensuring alignment is
handled by design rather than as an afterthought.



We argue that this architecture provides a more efficient, interpretable, and safer path
toward Augmented Human Intelligence (AHI), and ultimately AGlI, than the prevailing
paradigm of scaling monolithic models.

2. Related Work and Positioning
2.1 Critiques of Pure Scaling

Our argument builds on recent critiques of the “scaling hypothesis” in Al. Marcus & Davis
(2019) [2] argue for hybrid neurosymbolic architectures, demonstrating that pure pattern-
matching systems lack robust reasoning capabilities. Mitchell (2021) [3] highlights
fundamental limitations in the ability of large language models to perform systematic
generalization and causal reasoning. Chollet (2019) [4] introduces the concept of
“intelligence as skill-acquisition efficiency” rather than performance on training
distributions, highlighting how current approaches may be optimizing for the wrong metric.

Sutton’s “bitter lesson” (2019) [5] argues that general methods leveraging computation
ultimately prevail over human-engineered knowledge. We offer a nuanced counterpoint:
evolution itself represents the ultimate “general method,” and it has converged on
architectural principles- modularity, plasticity, and embodiment- that pure scaling has yet
to discover.

2.2 Modular and Cognitive Architectures

Our proposal shares philosophical kinship with classical cognitive architectures, such as
SOAR [6], ACT-R [7], and Sigma [8], which implement modular, symbol-manipulating
systems. However, we differ in three key ways:

1. Continuous plasticity: Unlike fixed architectures, we propose systems that adapt
their structure and coordination strategies during operation

2. Statistical and symbolic integration: Rather than purely symbolic reasoning, we
combine neural pattern recognition with structured causal reasoning

3. Evolutionary grounding: Our architectural principles derive from the EPU/BPU
framework rather than introspective cognitive psychology

2.3 Neurosymbolic and Multi-Agent Systems

Recent neurosymbolic Al research [9, 10] attempts to combine neural networks with
symbolic reasoning. Multi-agent systems [11, 12] demonstrate coordination among
specialized components. Our framework synthesizes these approaches while adding
executive meta-learning, explicit bias correction, and causal grounding as design
principles [13].

2.4 World Models and Embodied Al

LeCun’s vision of objective-driven Al with world models [14] parallels our emphasis on
causal reasoning and counterfactual simulation. However, where LeCun focuses on



predictive models for physical environments, we emphasize abstract causal reasoning,
value alignment integration, and human-Al collaboration as the near-term goal.

2.5 Existing Multi-Agent Frameworks

Phase 0 of our roadmap leverages existing multi-agent frameworks, including AutoGPT [15],
LangChain [16], Microsoft AutoGen [17], and CrewAl [18]. Our contribution is not in
implementation tooling but in the architectural principles and coordination mechanisms
inspired by evolutionary neuroscience.

3. The Foundation: Language as Cognitive Architecture

3.1 Language as Humanity’s First Artifact

Tom Wolfe’s provocative thesis in The Kingdom of Speech (2016) [19] positions language
not as an evolutionary adaptation, but as humanity’s first true invention. This artifact
facilitated the development of large cooperative societies and the emergence of abstract
reasoning. This perspective, reinforced by Daniel Everett’s linguistic fieldwork documented
in Don’t Sleep, There Are Snakes (2008) [20], reveals language as more than a
communication tool; it is the foundation of human cognitive architecture.

Everett’s work with the Piraha people of the Amazon demonstrates that language structure
varies far more dramatically than Chomskian universal grammar theories suggest. The
Piraha lack recursion, numbers, and fixed color terms, which are features considered
universal by many linguists. However, they possess sophisticated language adapted to
their cultural context. This suggests that language is not a fixed biological module, but a
flexible cultural tool that shapes cognition.

3.2 The Causal Revolution Enabled by Language

Language enables what Judea Pearl describes as humanity’s unique ability to climb all
three rungs of the causation ladder [13]:

e Seeing (Correlation): Observing that when clouds darken, rain follows
e Doing (Intervention): Understanding that opening an umbrella prevents getting wet

¢ Imagining (Counterfactuals): Reasoning about “If | had brought my umbrella, |
would not be wet now”

Current LLMs excel at pattern recognition (seeing) but struggle with causal reasoning
(doing and imagining). They lack the experiential grounding that allows humans to
understand not only what happens, but why it happens and what would happen if
conditions changed.

3.3 Abstraction as Cognitive Scaffolding

Language gave humans the ability to reason about things that do not physically exist:
Pearl’s counterfactuals, Harari’s shared myths (2015) [21], e.g., gods, corporations,



nations, and the very concept of “what if.” This abstraction layer enables the prefrontal
cortex to orchestrate competing cognitive systems, weighing trade-offs and integrating
disparate inputs into coherent actions.

Architectural implication: An Al system aspiring to human-like reasoning must develop
an abstract coordination layer that can represent, manipulate, and reason about concepts
existing only in symbolic space. In our proposed architecture, language serves three
critical functions: (1) internal representation - a standard format for inter-module
communication, (2) causal abstraction - enabling counterfactual and interventional
reasoning, and (3) value grounding -connecting statistical patterns to human concepts and
goals.

4. The Architecture of Human Intelligence

Yuval Noah Harari’s framework in Sapiens (2015) [21] describes the Cognitive Revolution
as the moment humans learned to think about abstractions that exist only in collective
imagination (or intersubjective reality). This capability emerges from what we now
understand, as outlined in Robert Sapolsky’s Behave (2017) [22] and Max Bennett’s A Brief
History of Intelligence (2023) [23], as a complex, modular brain architecture.

The human Biological Processing Unit (BPU) is not a monolithic processor but a
confederation of specialized regions:

e Sensory processing (vision, audition, proprioception)

e Memory systems (working, episodic, semantic, procedural)

e Emotional regulation (amygdala, limbic structures)

e Motor control (motor cortex, basal ganglia, cerebellum)

e Language processing (Broca’s and Wernicke’s areas, broader networks)
e Executive function (prefrontal cortex)

Crucially, these systems are coordinated by the prefrontal cortex, which acts as a dynamic
orchestrator, deciding which inputs to prioritize, how to weigh different considerations,
and when to override intuitive responses with deliberate reasoning. Notably, the prefrontal
cortex is the last brain region to mature fully, typically not reaching full development until
the mid-twenties [24]. This extended developmental period correlates with the sometimes
risky or impulsive behavior observed in adolescents, whose specialized systems are fully
operational but whose executive coordination remains immature. This developmental
trajectory underscores that intelligence is not merely about having powerful processing
modules, but about learning to orchestrate them effectively, which is a lesson directly
applicable to Al architecture.



5. Human Cognitive Limitations as Al Opportunities

5.1 The Dual-Process Framework

Daniel Kahneman’s Thinking, Fast and Slow (2011) [25] catalogs the systematic biases and
limitations of human cognition. Our “System 1” thinking is fast but prone to biases,
including confirmation bias, availability heuristic, anchoring, and loss aversion. While
“System 2” is deliberate and logical, it is cognitively expensive and prone to fatigue.

5.2 Evolutionary Heuristics in Modern Contexts

Brian Christian and Tom Griffiths, in Algorithms to Live By (2016) [26], demonstrate how
these apparent “bugs” are actually features, or evolutionary shortcuts that worked well in
ancestral environments but misfire in modern contexts. The availability heuristic served
our ancestors well (if you can easily recall tiger attacks, tigers are probably nearby);
however, it leads modern humans to overestimate terrorism risk while underestimating car
accidentrisk.

5.3 Architectural Opportunities for Bias Correction

This presents a unique opportunity for Al: by understanding human cognitive architecture,
we can design systems that enhance rather than merely replicate human intelligence.
Specifically:

Causal Reasoning Module addressing confirmation bias: Actively seek disconfirming
evidence, simulate alternative hypotheses, and track which beliefs survive rigorous testing
versus those that are subject to selective attention.

Value Assessment Module addressing loss aversion: Evaluate outcomes using
consistent utility functions, explicitly model reference point effects, and present decision
frames that reduce framing bias.

The goalis not to eliminate heuristics since they are computationally efficient and often
correct, but to create a system that knows when to trust them and when to override them
with more deliberate analysis.

6. Proposed Architecture: Modular Al with Executive Orchestration

6.1 Core Components

The proposed architecture consists of specialized processing modules coordinated by a
dynamic executive system, mirroring the brain’s distributed intelligence while leveraging
computational advantages.

Specialized Processing Modules:

1. Sensory Integration Module
o Processes multimodalinputs (vision, language, structured data)
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Performs initial feature extraction and pattern recognition
Maps diverse inputs to a common representational space

2. Memory Systems

o

o O O

Episodic memory: Stores specific experiences with temporal context
Semantic memory: Maintains general knowledge and concepts
Procedural memory: Encodes skills and procedures

Working memory: Provides temporary storage for active processing

Implements retrieval mechanisms that balance recency, relevance, and
representativeness

3. Causal Reasoning Module

o O O O

o

Constructs and manipulates causal graphs

Performs interventional queries (“what if | do X?”)

Generates counterfactual scenarios (“what if X had happened?”)
Learns causal relationships from observational and interventional data
Explicitly implements Pearl’s ladder of causation [13]

4. Language Processing Module
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Manages comprehension, generation, and reasoning
Serves as an inter-module communication protocol
Grounds abstract concepts in concrete examples
Handles pragmatics and context-dependent meaning

5. Value Assessment Module

©)
©)
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Evaluates outcomes against ethical frameworks and preference models
Detects potential value misalignment

Weighs competing values and trade-offs

Flags decisions requiring human oversight

Implements multiple moral frameworks in parallel for comparison

6. Motor/Action Module

@)
@)
©)

Plans and executes actions in physical or digital environments
Simulates action outcomes before execution
Learns from the consequences of action

Executive Orchestration System:

Inspired by the prefrontal cortex, this meta-cognitive system dynamically coordinates
modules through context-dependent routing, resource allocation, strategy selection
(choosing between fast heuristics and slow deliberation), confidence monitoring, bias
detection and correction, and meta-learning. The executive system maintains a
“coordination policy” that evolves through experience, learning which module
combinations work best for which types of problems.



6.2 Neural Plasticity and Continuous Learning

Unlike current LLMs that train in discrete cycles, this architecture features continuous
adaptation at multiple levels:

Synaptic Plasticity: Adjusting connection strength within modules based on prediction
errors through Hebbian learning.

Structural Plasticity: Forming or pruning connections between modules based on usage
patterns and creating new representational structures for novel concepts.

Executive Plasticity: Updating orchestration strategies based on outcomes and learning
which module combinations are effective for which tasks.

Meta-Plasticity: Adapting learning rates and plasticity mechanisms themselves,
balancing stability and flexibility based on environmental volatility, implementing “fast
weights” for rapid adaptation and “slow weights” for stable knowledge [27].

This multi-level plasticity enables the system to adapt to novel situations quickly,
consolidate important learning while remaining flexible, and acquire not only new
information but also new learning strategies.

6.3 Multi-Agent Emergence and Coordination Protocols

Scaling emerges through multi-agent collaboration, with individual systems specializing
while sharing insights through standardized protocols. This architecture enables
distributed processing, redundancy, and emergent capabilities.

Communication Protocol: Agents exchange structured representations through multiple
layers, including a semantic layer (common ontology), an epistemic layer (confidence
scores, reasoning traces, and citations), and a meta-cognitive layer (processing strategies,
known limitations, and resource costs). This mirrors how the prefrontal cortex integrates
inputs from multiple brain regions [28].

Consensus Mechanisms: When agents disagree, the system employs meta-reasoning,
including track record weighting, uncertainty-aware voting, bias detection, and a diversity
premium to avoid groupthink, as well as human escalation for significant disagreements.

Knowledge Sharing: Agents transfer learned weights and strategies selectively and
context-aware: modular transfer of specific capabilities, meta-learning transfer of
successful strategies, and specialization preservation to maintain distinct expertise
profiles while benefiting from collective learning.

Emergent Properties: Multi-agent interaction enables division of cognitive labor,
collective error correction, distributed robustness, and innovation through recombination
of insights across agents.



6.4 Technical Implementation Considerations

While this paper presents a conceptual framework rather than a detailed implementation
specification, several technical considerations merit discussion:

Module Interface Specifications:
Each module implements a standardized API:

Query: {task, context, constraints, confidence_threshold}
Response: {output, confidence, reasoning_trace, resource_cost, uncertainty_map}

This allows modules to be developed, tested, and improved independently while
maintaining system coherence.

Executive Decision-Making:

The executive system can be implemented as a learned policy (reinforcement learning over
coordination strategies), a probabilistic program (Bayesian inference over module outputs),
or a hybrid combining learned heuristics with explicit rules for high-stakes decisions.

Continuous Learning Implementation:

Rather than separating training and deployment phases, online learning with experience
replay ensures stability, periodic consolidation compresses episodic memories into
semantic knowledge, and human feedback is integrated through interactive learning.

Safety Mechanisms:

Module sandboxing (each module operates in a constrained environment), output
verification (multiple modules cross-check critical decisions), human checkpoints
(decisions above uncertainty thresholds require human approval), and rollback capability
(problematic learning can be reversed to previous stable states).

These considerations are intentionally flexible, allowing different implementations while
preserving core architectural principles.

7. Addressing Bias and Alignment

A modular system with explicit value assessment and oversight offers structural
advantages for alignment (Christian, 2020) [29]:

Parallel Ethical Frameworks: Multiple moral reasoning systems operate simultaneously
(utilitarian, deontological, virtue ethics, care ethics). Disagreements between frameworks
flag morally complex situations, and human judgment resolves fundamental value
conflicts.

Module-Level Bias Detection: Each module logs decisions and confidence levels.
Statistical auditing identifies systematic biases (e.g., gender or racial patterns). Biased
modules can be retrained or replaced without requiring the entire system to be rebuilt.



Transparent Value Trade-offs: The Value Assessment Module makes trade-offs explicit.
Users can adjust the weighting of competing values (efficiency, fairness, and autonomy).
Decision logs enable post-hoc review and appeal.

Human-Al Value Learning: The system learns user values through interactive feedback.
Uncertainty about values triggers queries rather than assumptions. Value models remain
updateable as human preferences evolve.

This tackles the alignment challenge by design, rather than retrofitting solutions after
training. The modular structure enables localized and correctable alignment failures rather
than systemic and opaque issues.

8. Research and Development Roadmap

The following phases represent educated estimates for development timelines, which may
prove to be shorter or longer, depending on technical breakthroughs and resource
availability. These timelines target Augmented Human Intelligence (AHI) systems, which
are Al that enhance human decision-making, as a steppingstone toward more autonomous
AGI.

Phase 0: Early Prototyping (Current - 1 year)
Goal: Demonstrate feasibility using existing frameworks

Approach: Implement proof-of-concept multi-agent systems using AutoGPT, LangChain,
or similar frameworks [15, 16, 17, 18]. Create 3-4 specialized agents: reasoning
orchestrator, causal analyzer, fact-checker, value assessor. Establish human-in-the-loop
checkpoints at critical decision nodes.

Success Criteria: Demonstrable improvement over single-agent baselines, interpretable
decision trails, and successful human-Al collaboration on complex tasks.

Phase 1: Proof of Concept (1-2 years)
Goal: Develop genuine modular architecture with 3-5 specialized modules

Components: Perception module, memory module, causal reasoning module, value
assessment module, and basic executive orchestrator with fixed coordination strategy.

Focus Areas: Module interfaces and communication protocols, interpretability and
decision tracing, safety mechanisms and failure modes, and benchmark performance on
reasoning tasks.

Phase 2: Dynamic Adaptation (2-3 years)

Goal: Implement continuous learning and adaptive coordination



Additions: Multi-level plasticity (synaptic, structural, executive), meta-learning for
coordination strategies, online learning without catastrophic forgetting, and expanded
module set (6-8 specialized components).

Focus Areas: Learning stability and convergence, transfer learning across domains,
handling distribution shift and concept drift, and long-term learning without degradation.

Phase 3: Multi-Agent Systems (3-5 years)
Goal: Distributed architectures with emergent collective intelligence

Implementation: Multiple specialized modular systems, standardized communication
protocols, consensus and conflict resolution mechanisms, and knowledge sharing and
collective learning.

Phase 4: Real-World Augmented Intelligence (5+ years)
Goal: Deployment as a human decision support system

Applications: Scientific research assistance, medical diagnosis and treatment planning,
legal analysis and case research, strategic planning and policy analysis, and engineering
design and optimization.

Important Note: These phases target AHI (systems that enhance human intelligence)
rather than fully autonomous AGI. The timeline to AGI, if achievable through this
architecture, remains highly uncertain and dependent on breakthroughs we cannot
currently predict.

9. Implications and Future Directions

9.1 Scientific Understanding

Prototypes may shed light on fundamental questions: How does consciousness emerge
from the coordination of modular components? What is the relationship between plasticity
and stability? Can causal reasoning emerge from statistical learning, or must it be
architected explicitly? These systems can serve as “model organisms” for studying
intelligence.

9.2 Societal Impact

Rather than replacing human reasoning, Augmented Human Intelligence could reshape
healthcare (diagnostic support, treatment planning), governance (evidence synthesis,
scenario modeling), education (personalized learning, Socratic tutoring), and scientific
research (hypothesis generation, experimental design). The goal is to amplify human
judgment, not automate human roles.



9.3 Economic Efficiency

Architecturalinnovation could democratize access to advanced Al by reducing training
costs (continuous learning eliminates expensive retraining cycles), lowering inference
costs (through attention-based resource allocation and modular activation), and
facilitating accessible deployment (via smaller systems on modest hardware and open-
source modules).

Energy Efficiency Clarification: While training large models like GPT-4 required millions of
kilowatt-hours, inference costs per query are far more modest when amortized across
billions of queries. The key advantage of our architecture is that it eliminates the need for
expensive periodic retraining through continuous learning. The biological brain operates on
approximately 20 watts continuously while learning throughout its lifetime, this continuous
adaptation without discrete training phases represents the efficiency target for artificial
systems.

9.4 Safety and Alignment

Modular oversight and transparent orchestration address “black box” Al concerns through
interpretability by design (decisions trace through explicit reasoning chains), localized
failure modes (problems in one module do not corrupt the entire system), value alighment
mechanisms (explicit ethical frameworks, competing values made transparent), and
regulatory compliance (decision logs enable accountability, bias auditing at module level).

9.5 Open Research Questions
Several critical questions remain:
1. Whatis the optimal level of granularity for module specialization?

2. Can coordination strategies be learned end-to-end, or must they be partially hard-
coded?

3. How do abstract concepts emerge from and remain grounded in sensorimotor
experience?

4. Atwhat level of system complexity does the coordination overhead exceed the
benefits?

10. Conclusion

The path to AGI, or to Augmented Human Intelligence, need not be paved with ever-larger
models consuming exponentially more energy. By learning from four billion years of
evolutionary optimization through the Evolutionary Processing Unit, we can design Al
systems that are not only more intelligent but also more efficient, interpretable, and
aligned with human values.



Evolution converged on modularity, plasticity, causal grounding, and efficient attention
allocation not by accident, but because these architectural principles solve fundamental
challenges in resource-constrained intelligence. The 20-order-of-magnitude
computational gap between the EPU and our most powerful supercomputersis nota
benchmark to match through brute force, but a lesson in the power of architectural
innovation.

In summary, this paper's contribution is a modular architecture for adaptive Al whose core
innovations are dynamic executive orchestration and multi-level continuous plasticity,
inspired directly by the BPU. This foundation enables its defining capabilities: robust
causal reasoning, architectural bias correction, and integrated value alignment. We
contend that these principles, distilled from four billion years of evolutionary optimization,
are essential for building systems that are not merely powerful, but also wise, efficient,
and aligned.

AGI will not emerge solely from scaling current architectures. It will come from modular,
adaptive, orchestrated systems, ones that correct for human biases, continuously learn,
and integrate ethical reasoning into their core. Critically, these systems may achieve their
most significant impact not as standalone artificial minds, but as cognitive partners that
enhance human wisdom and extend human capability.

This is the path toward wisdom, not just raw intelligence. The future of Al lies not in the
silicon of GPUs, but in the carbon-based wisdom of our evolutionary past, thoughtfully
integrated with our computational future. By building machines that complement rather
than replicate human cognition, we may finally realize the promise of artificial intelligence:
not to replace human judgment, but to help us make better use of the remarkable
intelligence that evolution has already endowed us with.
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