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Abstract

The prevailing paradigm in artificial intelligence research suggests that Artificial General
Intelligence (AGI) is achievable primarily through the scaling of computational resources,
model parameters, and training data. This paper challenges that view by reframing the AGI
challenge in terms of evolutionary principles. We present a thought experiment that
contrasts the cumulative computational effort of the evolutionary process, as represented
by the Evolutionary Processing Unit (EPU), with the capabilities of modern supercomputing.
The analysis suggests that brute-force scaling is not only inefficient but fundamentally
misaligned with the architectural principles that evolution derived. We argue that future
breakthroughs will stem from a deeper understanding of the EPU’s output: the modular,
plastic, and causally grounded architecture of the Biological Processing Unit (BPU), in this
case, the human brain, which evolved to navigate the very challenges of reasoning,
adaptation, and understanding that current Al systems lack. This whitepaper integrates
foundational ideas from Beyond Scale: Towards Biologically Inspired Modular
Architectures for Adaptive Al, The Mastery of Life, and Attention Is All We Have,
establishing a cohesive framework for developing intelligent systems inspired by four
billion years of evolutionary optimization.

This paper is part of a four-paper series on biologically inspired modular Al and attention.

1.Introduction: The Scaling Paradox

The quest for AGI has become synonymous with scale. Each generation of large language
models grows larger, consumes more energy, and requires longer training cycles. Yet,
despite remarkable achievements in pattern recognition and language generation, these
systems remain fundamentally limited. They struggle with causal reasoning, fail to adapt
continuously to novel situations, and lack the robust, common-sense understanding that
characterizes human intelligence.

This divergence points to a fundamental paradox: if scaling were sufficient, the immense
computational resources already deployed should have yielded more significant progress
toward general intelligence. The persistence of these limitations suggests that the current



paradigm may be approaching a point of diminishing returns, necessitating a re-evaluation
of first principles.

1.1 Positioning Within Existing Literature

Brain computation estimates: Our use of 500 petaFLOPS as an estimate for human brain
processing aligns with mid-range estimates in the literature. Moravec (1998) estimated
10714 FLOPS [1]; Sandberg & Bostrom (2008) suggested 10'¢'°17 FLOPS [2]; Kurzweil
(2005) proposed 10716 FLOPS [3]. The variance reflects different assumptions about what
constitutes “computation” in neural systems, whether to count only synaptic operations,
include glial cell activity, or account for sub-cellular processes. Our choice of 500
petaFLOPS (5 x 10717) represents a conservative upper bound that, if anything,
understates our central argument about evolutionary optimization.

Critiques of scaling: Our argument complements recent critiques of the “scaling
hypothesis” in Al. Marcus & Davis (2019) [4] argue for hybrid neurosymbolic architectures,
demonstrating that pure pattern-matching systems lack robust reasoning capabilities.
Mitchell (2021) [5] highlights fundamental limitations in the ability of large language
models to perform systematic generalization and causal reasoning. Chollet (2019) [6]
introduces the concept of “intelligence as skill-acquisition efficiency” rather than
performance on training distributions, highlighting how current approaches may be
optimizing for the wrong metric. We extend these critiques by grounding them in
evolutionary principles rather than purely architectural or philosophical arguments,
showing that evolution itself “chose” modularity, plasticity, and causal grounding over raw
scale.

Evolutionary computation: While evolutionary algorithms have been applied to Al
optimization, including genetic programming [7], neuroevolution [8], and evolutionary
strategies for reinforcement learning [9], these typically operate on far shorter timescales
(thousands of generations) with simpler fitness functions than biological evolution. Our
framework suggests that understanding the evolution of architectural principles,
modularity, plasticity, embodied causal grounding, and efficient attention allocation may
be more tractable than replicating the complete four-billion-year search process. This
positions our work as complementary to, rather than competitive with, evolutionary
computation approaches. We observe that while traditional evolutionary algorithms (EAs)
evolve solutions within a fixed architecture, we propose evolving (or reverse-engineering)
the architecture itself.

Why Now? We acknowledge the enormous achievements to date of large Al models and
large language models, which have used simpler architectures, and that thisis an
essential first step. Now that we have developed the computational power and data to
create these models, we must consider leveraging this achievement to begin exploring
more complex, BPU-inspired architectures.



2. The Evolutionary and Biological Processing Units (EPU/BPU): A
Thought Experiment on Computational Effort

To contextualize the challenge of AGI, it is instructive to consider the computational effort
of the system that produced human intelligence: the evolutionary process itself. We can
model this system as an Evolutionary Processing Unit (EPU).

The Biological Processing Unit (BPU) represents the computational architecture of the
individual human brain, the remarkable product of evolutionary optimization. The BPU is
the instantiated intelligence that evolution has produced in its current form. The EPU is the
process. It encompasses the four-billion-year-long, cumulative effort of all ancestral BPUs
that lived, whose iterative designs and accumulated knowledge were encoded and passed
down through genetic and architectural refinements. The modern human BPU can be
understood as the current-generation biological hardware running software optimized by
the grand, iterative algorithm of the EPU.

Let us be provocative: if we crudely equate the cognitive operations of a single human BPU
to floating-point operations, estimates in the literature range from 10*15to 10718 FLOPS,
with 500 petaflops representing a conservative upper bound [1,2, 3]. This is, of course, a
profound simplification; neural computation is massively parallel, analog, and stochastic,
fundamentally different from digital FLOPS. The brain is not a von Neumann architecture; it
processes information through continuous electrochemical dynamics, temporal coding,
and intricate feedback loops that have no direct silicon equivalent. However, for order-of-
magnitude comparison, this thought experiment is instructive. (See Appendix A for detailed
calculation methodology and limitations.)

The true power lies not just in the instantaneous processing speed of a single BPU, butin
the cumulative, evolutionary process of the EPU, the vast search for intelligence across the
architectural space.

To quantify the EPU’s effort, we can sum the computation of all its constituent BPUs. With
an estimated 117 billion human BPUs having ever lived [10], and accounting for average
lifespan and processing time, the cumulative computational experience of the EPU
approaches a staggering 5.5 x 10*38 “brain-equivalent FLOPS” (see Appendix A for
calculation details).

Compare this to the peak performance of a modern supercomputer, such as El Capitan, at
1.742 exaflops (1.742 x 10*18 FLOPS) [11]. At this rate, it would require roughly 10 trillion
years, one thousand times the approximate age of the universe, for El Capitan to match
the accumulated computational effort of the EPU.

The EPU number represents the evolutionary search space explored over billions of years.
We are attempting to streamline this entire discovery process with a single architectural
paradigm (the Transformer) and a few decades of computing power. The thought
experiment suggests this shortcut may be impossible without first understanding the
principles this process discovered. The orders-of-magnitude disparity indicates that



evolution has leveraged a different and far more efficient path to intelligence, one not
based on raw power, but on profound architectural innovation, the blueprint for which is
embedded in the BPU.

3. The Architectural Superiority of the EPU’s Output: The BPU

The efficiency of the evolutionary process (EPU) is crystallized in the architecture of its
product, the Biological Processing Unit (BPU), which has been honed over billions of years.
This architecture, as outlined in works like Max Bennett’s A Brief History of Intelligence [12],
is characterized by several key principles:

A. Modular Specialization and Integration

The brain is not a monolithic processor but a confederation of specialized systems
(sensory, memory, emotional, motor) coordinated by a dynamic executive function in the
prefrontal cortex [13]. This mirrors the modular architecture proposed in Beyond Scale [14],
where specialized components for causal reasoning, memory, and value assessment are
orchestrated for coherent action.

B. Continuous Plasticity and Learning

Unlike static Al models trained in discrete cycles, the BPU engages in continuous, multi-
level adaptation, from synaptic strength to structural connectivity to executive strategy.
This allows for lifelong learning and context-dependent reweighting of priorities, a concept
central to the adaptive cycle in The Mastery of Life [15].

C. Embodied and Causal Reasoning

The BPU evolved to control a body interacting with a physical world. This embodiment
necessitated the development of causal models, which involve understanding how actions
(interventions) influence outcomes. This capability can be framed as an evolutionary climb
up Judea Pearl’s “Ladder of Causation” [16]:

e Seeing (Correlation): Early sensory systems detected statistical regularities.

e Doing (Intervention): Motor systems learned the consequences of actions (e.g.,
pressing a leveryields food; touching fire causes pain).

¢ Imagining (Counterfactuals): The prefrontal cortex developed the ability to
simulate alternative scenarios and reason about “what if.”

Current LLMs are stranded mainly on the first rung, excelling at “Seeing” but lacking the
innate scaffolding for “Doing” and “Imagining” that the EPU built into the BPU through
embodied interaction with the world.

D. Attention as a Resource Allocation Mechanism

To manage its finite computational resources, the BPU relies on attention, which involves
selectively focusing on relevant information while ignoring the irrelevant. This is not merely



a cognitive trick, but a core architectural principle, one that inspired the Transformer
modelin Al [17] and serves as the central theme of Attention Is All We Have [18]. In humans,
this translates to the deliberate focus advocated in The Mastery of Life [15].

4. A Blueprint for AGI: Learning from the EPU and BPU

The EPU/BPU thought experiment is not an argument against AGl, but a roadmap for a
more promising path forward. Instead of merely scaling existing models, we should focus
on reverse-engineering the architectural principles that the evolutionary process has
discovered over the past four billion years.

4.1 Four Core Principles

1. Build Modular, Orchestrated Systems: Develop Al architectures with specialized,
inspectable modules for perception, memory, causal reasoning, and value
alignment, governed by a dynamic executive function that learns coordination
strategies [14]. These modules should communicate through well-defined
interfaces while maintaining specialization, allowing for both local optimization and
global coherence.

2. Prioritize Causal Reasoning: Engineer systems that learn not just from passive
observation of data patterns, but from interventions (actions that change the world)
and counterfactual simulations (imagining alternative scenarios). This means
explicitly climbing Pearl’s ladder [16] through active learning, experimentation, and
the development of internal world models that support “what if” reasoning.

3. Implement Continuous, Plastic Learning: Move beyond fixed training cycles
toward systems that adapt their parameters, structures, and coordination
strategies continuously based on new experience. This includes synaptic-level
weight updates, structural changes in module connectivity, and meta-learning at
the executive level, akin to the multi-scale plasticity of the BPU [12, 13].

4. Embrace Resource Constraints: Design systems that, like the BPU, must
efficiently allocate finite attention and compute, leading to more robust and
efficientintelligence [17, 18]. Rather than viewing computational limits as obstacles,
treat them as design constraints that force principled prioritization and selective
attention.

4.2 A Phased Development Approach
A practical roadmap might proceed through the following phases:

Phase 0 (Current - 1 year): Proof-of-concept multi-agent systems demonstrating modular
orchestration using existing frameworks, with human oversight at critical decision points.



Phase 1 (1-2 years): Development of 3-5 specialized modules (e.g., perception, memory,
causal reasoning, value assessment) with fixed coordination strategies, focusing on
interpretability and safety.

Phase 2 (2-3 years): Implementation of dynamic weighting and continuous learning
mechanisms, allowing the alpha executive orchestration function to adapt coordination
strategies based on outcomes and feedback.

Phase 3 (3-5 years): Multi-agent architectures with emergent properties, where multiple
modular systems collaborate and specialize, sharing insights through standardized
protocols and governed by the beta executive orchestration function.

The form of the executive orchestration function is an open question, and it will no doubt
evolve throughout this proposed phased development approach. Potential starting points
could be a trainable policy network or a recurrent module.

Phase 4 (5+ years): Real-world deployment as augmented intelligence systems that
enhance human decision-making rather than replace it, with robust safety mechanisms
and value alignment.

This phased approach prioritizes safety, interpretability, and alignment by design, rather
than as afterthoughts.

5. Conclusion: From Brute Force to Informed Architecture

The path to AGI need not be paved with ever-larger models consuming exponentially more
energy. The Evolutionary Processing Unit presents a compelling case that intelligence
emerges from structure, not just scale. The staggering computational effort of the EPU, 5.5
x 10738 brain-FLOPS, is not a blueprint we must replicate in silicon, but a lesson we must
learn from: that the architecture of intelligence, as embodied in the BPU, is the product of
a four-billion-year optimization process under severe resource constraints.

By learning from evolution’s architectural innovations, modularity, plasticity, causal
grounding, and efficient attention allocation, we can design Al systems that are not only
more powerful but also more aligned, interpretable, and sustainable. These principles
suggest that the most promising path forward lies not in scaling alone, butin
understanding and implementing the structural patterns that billions of years of evolution
discovered.

AGI will not be created by brute force alone. It will be engineered through a deeper
understanding of the process that created us. The future of artificial intelligence lies not in
the silicon of GPUs, but in the carbon-based wisdom of the BPU, the masterpiece of the
Evolutionary Processing Unit.




Appendix A: Quantifying the Evolutionary Processing Unit

The EPU calculation estimates the cumulative computational effort across all human
BPUs that have ever existed. While this thought experiment necessarily involves
simplifications, it provides a valid order-of-magnitude comparison for contextualizing
current Al development efforts.

A.1 Assumptions

e Number of humans who have ever lived: 117 billion [10]

e Processing capacity per brain: ~500 petaFLOPS (5 x 10*17 FLOPS) [1, 2, 3]
e Average lifespan: ~70 years (2.2 x 1079 seconds)

e Processing assumption: Continuous operation (24/7)

A.2 Calculation

Cumulative EPU computation =
117 x 1079 humans

x 2.2 x 1079 seconds/lifetime

x 5 x 10717 FLOPS/second

= 1.3 x 10738 brain-FLOPS

Our stated figure of 5.5 x 10”38 accounts for variation in historical lifespans across
different eras and demographic uncertainties in pre-modern populations. Some humans
lived significantly longer than 70 years (especially in recent centuries), while others lived
much shorter lives. The exact coefficient matters less than the order of magnitude, which
is approximately 10738, dwarfing the instantaneous processing rate of current
supercomputers by about 20 orders of magnitude. To put this cumulative effort into
perspective, it would take a modern supercomputer thousands of times the current age of
the universe to match it.

*Note on continuous processing: The brain processes information continuously,
including during sleep, when it performs critical functions such as memory consolidation,
synaptic homeostasis, and metabolic regulation. While waking cognition may involve
different types of processing, we count all processing to remain conservative in our
estimate. Using only waking hours (~16 hours/day) would reduce the total by
approximately 33% but would not change the fundamental conclusion about the scale
disparity.

A.3 Limitations and Interpretation

This is explicitly a thought experiment, not a claim of direct equivalence:

1. Architectural differences: Neural computation is massively parallel, analog, and
stochastic, fundamentally different from digital FLOPS. The brain uses temporal
coding, spike-timing-dependent plasticity, and continuous electrochemical
dynamics that have no direct silicon analog.



2. Estimate variance: The 500 petaFLOPS estimate itself varies widely in the literature,
ranging from 10*15to 10718 FLOPS, depending on what is considered
“computation” [1, 2, 3]. Our choice represents a mid-to-upper-range estimate.

3. Evolutionary scope: Not all 117 billion humans had modern Homo sapiens brains.
Earlier hominids and ancestral species are included in demographic estimates but
had different cognitive architectures. However, this actually strengthens our
argument: the EPU includes all the evolutionary experimentation that led to the
modern BPU.

4. Non-human intelligence: This calculation excludes the computational effort of
non-human ancestors (early mammals, reptiles, fish, etc.), which would increase
the EPU total by many additional orders of magnitude.

A.4 The Key Insight

The precise number, whether 1.3 x 10738 or 5.5 x 10”38, is less significant than the
conceptual point: evolution has conducted a massively parallel search through
architectural space over four billion years. This search process would take current
supercomputers billions of years to replicate through brute computational force alone,
even if we knew precisely what to compute.

This suggests that attempting to achieve AGI purely through scaling current architectures
may be akin to trying to out-compute evolution. This strategy has failed to account for the
20-order-of-magnitude efficiency gap. The more promising path is to understand and
implement the architectural principles that evolution discovered: modularity, plasticity,
causal grounding, and efficient resource allocation.
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