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Abstract 

The prevailing paradigm in artificial intelligence research suggests that Artificial General 
Intelligence (AGI) is achievable primarily through the scaling of computational resources, 
model parameters, and training data. This paper challenges that view by reframing the AGI 
challenge in terms of evolutionary principles. We present a thought experiment that 
contrasts the cumulative computational effort of the evolutionary process, as represented 
by the Evolutionary Processing Unit (EPU), with the capabilities of modern supercomputing. 
The analysis suggests that brute-force scaling is not only inefficient but fundamentally 
misaligned with the architectural principles that evolution derived. We argue that future 
breakthroughs will stem from a deeper understanding of the EPU’s output: the modular, 
plastic, and causally grounded architecture of the Biological Processing Unit (BPU), in this 
case, the human brain, which evolved to navigate the very challenges of reasoning, 
adaptation, and understanding that current AI systems lack. This whitepaper integrates 
foundational ideas from Beyond Scale: Towards Biologically Inspired Modular 
Architectures for Adaptive AI, The Mastery of Life, and Attention Is All We Have, 
establishing a cohesive framework for developing intelligent systems inspired by four 
billion years of evolutionary optimization. 

This paper is part of a four-paper series on biologically inspired modular AI and attention. 

1.Introduction: The Scaling Paradox 

The quest for AGI has become synonymous with scale. Each generation of large language 
models grows larger, consumes more energy, and requires longer training cycles. Yet, 
despite remarkable achievements in pattern recognition and language generation, these 
systems remain fundamentally limited. They struggle with causal reasoning, fail to adapt 
continuously to novel situations, and lack the robust, common-sense understanding that 
characterizes human intelligence. 

This divergence points to a fundamental paradox: if scaling were sufficient, the immense 
computational resources already deployed should have yielded more significant progress 
toward general intelligence. The persistence of these limitations suggests that the current 



paradigm may be approaching a point of diminishing returns, necessitating a re-evaluation 
of first principles. 

1.1 Positioning Within Existing Literature 

Brain computation estimates: Our use of 500 petaFLOPS as an estimate for human brain 
processing aligns with mid-range estimates in the literature. Moravec (1998) estimated 
10^14 FLOPS [1]; Sandberg & Bostrom (2008) suggested 1016-1017 FLOPS [2]; Kurzweil 
(2005) proposed 10^16 FLOPS [3]. The variance reflects different assumptions about what 
constitutes “computation” in neural systems, whether to count only synaptic operations, 
include glial cell activity, or account for sub-cellular processes. Our choice of 500 
petaFLOPS (5 × 10^17) represents a conservative upper bound that, if anything, 
understates our central argument about evolutionary optimization. 

Critiques of scaling: Our argument complements recent critiques of the “scaling 
hypothesis” in AI. Marcus & Davis (2019) [4] argue for hybrid neurosymbolic architectures, 
demonstrating that pure pattern-matching systems lack robust reasoning capabilities. 
Mitchell (2021) [5] highlights fundamental limitations in the ability of large language 
models to perform systematic generalization and causal reasoning. Chollet (2019) [6] 
introduces the concept of “intelligence as skill-acquisition efficiency” rather than 
performance on training distributions, highlighting how current approaches may be 
optimizing for the wrong metric. We extend these critiques by grounding them in 
evolutionary principles rather than purely architectural or philosophical arguments, 
showing that evolution itself “chose” modularity, plasticity, and causal grounding over raw 
scale. 

Evolutionary computation: While evolutionary algorithms have been applied to AI 
optimization, including genetic programming [7], neuroevolution [8], and evolutionary 
strategies for reinforcement learning [9], these typically operate on far shorter timescales 
(thousands of generations) with simpler fitness functions than biological evolution. Our 
framework suggests that understanding the evolution of architectural principles, 
modularity, plasticity, embodied causal grounding, and efficient attention allocation may 
be more tractable than replicating the complete four-billion-year search process. This 
positions our work as complementary to, rather than competitive with, evolutionary 
computation approaches. We observe that while traditional evolutionary algorithms (EAs) 
evolve solutions within a fixed architecture, we propose evolving (or reverse-engineering) 
the architecture itself.  

Why Now? We acknowledge the enormous achievements to date of large AI models and 
large language models, which have used simpler architectures, and that this is an 
essential first step. Now that we have developed the computational power and data to 
create these models, we must consider leveraging this achievement to begin exploring 
more complex, BPU-inspired architectures.  



2. The Evolutionary and Biological Processing Units (EPU/BPU): A 
Thought Experiment on Computational Effort 

To contextualize the challenge of AGI, it is instructive to consider the computational effort 
of the system that produced human intelligence: the evolutionary process itself. We can 
model this system as an Evolutionary Processing Unit (EPU). 

The Biological Processing Unit (BPU) represents the computational architecture of the 
individual human brain, the remarkable product of evolutionary optimization. The BPU is 
the instantiated intelligence that evolution has produced in its current form. The EPU is the 
process. It encompasses the four-billion-year-long, cumulative effort of all ancestral BPUs 
that lived, whose iterative designs and accumulated knowledge were encoded and passed 
down through genetic and architectural refinements. The modern human BPU can be 
understood as the current-generation biological hardware running software optimized by 
the grand, iterative algorithm of the EPU. 

Let us be provocative: if we crudely equate the cognitive operations of a single human BPU 
to floating-point operations, estimates in the literature range from 10^15 to 10^18 FLOPS, 
with 500 petaflops representing a conservative upper bound [1,2, 3]. This is, of course, a 
profound simplification; neural computation is massively parallel, analog, and stochastic, 
fundamentally different from digital FLOPS. The brain is not a von Neumann architecture; it 
processes information through continuous electrochemical dynamics, temporal coding, 
and intricate feedback loops that have no direct silicon equivalent. However, for order-of-
magnitude comparison, this thought experiment is instructive. (See Appendix A for detailed 
calculation methodology and limitations.) 

The true power lies not just in the instantaneous processing speed of a single BPU, but in 
the cumulative, evolutionary process of the EPU, the vast search for intelligence across the 
architectural space. 

To quantify the EPU’s effort, we can sum the computation of all its constituent BPUs. With 
an estimated 117 billion human BPUs having ever lived [10], and accounting for average 
lifespan and processing time, the cumulative computational experience of the EPU 
approaches a staggering 5.5 × 10^38 “brain-equivalent FLOPS” (see Appendix A for 
calculation details). 

Compare this to the peak performance of a modern supercomputer, such as El Capitan, at 
1.742 exaflops (1.742 × 10^18 FLOPS) [11]. At this rate, it would require roughly 10 trillion 
years, one thousand times the approximate age of the universe, for El Capitan to match 
the accumulated computational effort of the EPU. 

The EPU number represents the evolutionary search space explored over billions of years. 
We are attempting to streamline this entire discovery process with a single architectural 
paradigm (the Transformer) and a few decades of computing power. The thought 
experiment suggests this shortcut may be impossible without first understanding the 
principles this process discovered. The orders-of-magnitude disparity indicates that 



evolution has leveraged a different and far more efficient path to intelligence, one not 
based on raw power, but on profound architectural innovation, the blueprint for which is 
embedded in the BPU. 

3. The Architectural Superiority of the EPU’s Output: The BPU 

The efficiency of the evolutionary process (EPU) is crystallized in the architecture of its 
product, the Biological Processing Unit (BPU), which has been honed over billions of years. 
This architecture, as outlined in works like Max Bennett’s A Brief History of Intelligence [12], 
is characterized by several key principles: 

A. Modular Specialization and Integration 

The brain is not a monolithic processor but a confederation of specialized systems 
(sensory, memory, emotional, motor) coordinated by a dynamic executive function in the 
prefrontal cortex [13]. This mirrors the modular architecture proposed in Beyond Scale [14], 
where specialized components for causal reasoning, memory, and value assessment are 
orchestrated for coherent action. 

B. Continuous Plasticity and Learning 

Unlike static AI models trained in discrete cycles, the BPU engages in continuous, multi-
level adaptation, from synaptic strength to structural connectivity to executive strategy. 
This allows for lifelong learning and context-dependent reweighting of priorities, a concept 
central to the adaptive cycle in The Mastery of Life [15]. 

C. Embodied and Causal Reasoning 

The BPU evolved to control a body interacting with a physical world. This embodiment 
necessitated the development of causal models, which involve understanding how actions 
(interventions) influence outcomes. This capability can be framed as an evolutionary climb 
up Judea Pearl’s “Ladder of Causation” [16]: 

• Seeing (Correlation): Early sensory systems detected statistical regularities. 
• Doing (Intervention): Motor systems learned the consequences of actions (e.g., 

pressing a lever yields food; touching fire causes pain). 
• Imagining (Counterfactuals): The prefrontal cortex developed the ability to 

simulate alternative scenarios and reason about “what if.” 

Current LLMs are stranded mainly on the first rung, excelling at “Seeing” but lacking the 
innate scaffolding for “Doing” and “Imagining” that the EPU built into the BPU through 
embodied interaction with the world. 

D. Attention as a Resource Allocation Mechanism 

To manage its finite computational resources, the BPU relies on attention, which involves 
selectively focusing on relevant information while ignoring the irrelevant. This is not merely 



a cognitive trick, but a core architectural principle, one that inspired the Transformer 
model in AI [17] and serves as the central theme of Attention Is All We Have [18]. In humans, 
this translates to the deliberate focus advocated in The Mastery of Life [15]. 

4. A Blueprint for AGI: Learning from the EPU and BPU 

The EPU/BPU thought experiment is not an argument against AGI, but a roadmap for a 
more promising path forward. Instead of merely scaling existing models, we should focus 
on reverse-engineering the architectural principles that the evolutionary process has 
discovered over the past four billion years. 

4.1 Four Core Principles 
1. Build Modular, Orchestrated Systems: Develop AI architectures with specialized, 

inspectable modules for perception, memory, causal reasoning, and value 
alignment, governed by a dynamic executive function that learns coordination 
strategies [14]. These modules should communicate through well-defined 
interfaces while maintaining specialization, allowing for both local optimization and 
global coherence. 

2. Prioritize Causal Reasoning: Engineer systems that learn not just from passive 
observation of data patterns, but from interventions (actions that change the world) 
and counterfactual simulations (imagining alternative scenarios). This means 
explicitly climbing Pearl’s ladder [16] through active learning, experimentation, and 
the development of internal world models that support “what if” reasoning. 

3. Implement Continuous, Plastic Learning: Move beyond fixed training cycles 
toward systems that adapt their parameters, structures, and coordination 
strategies continuously based on new experience. This includes synaptic-level 
weight updates, structural changes in module connectivity, and meta-learning at 
the executive level, akin to the multi-scale plasticity of the BPU [12, 13]. 

4. Embrace Resource Constraints: Design systems that, like the BPU, must 
efficiently allocate finite attention and compute, leading to more robust and 
efficient intelligence [17, 18]. Rather than viewing computational limits as obstacles, 
treat them as design constraints that force principled prioritization and selective 
attention. 

4.2 A Phased Development Approach 

A practical roadmap might proceed through the following phases: 

Phase 0 (Current - 1 year): Proof-of-concept multi-agent systems demonstrating modular 
orchestration using existing frameworks, with human oversight at critical decision points. 



Phase 1 (1-2 years): Development of 3-5 specialized modules (e.g., perception, memory, 
causal reasoning, value assessment) with fixed coordination strategies, focusing on 
interpretability and safety. 

Phase 2 (2-3 years): Implementation of dynamic weighting and continuous learning 
mechanisms, allowing the alpha executive orchestration function to adapt coordination 
strategies based on outcomes and feedback. 

Phase 3 (3-5 years): Multi-agent architectures with emergent properties, where multiple 
modular systems collaborate and specialize, sharing insights through standardized 
protocols and governed by the beta executive orchestration function. 

The form of the executive orchestration function is an open question, and it will no doubt 
evolve throughout this proposed phased development approach. Potential starting points 
could be a trainable policy network or a recurrent module.  

Phase 4 (5+ years): Real-world deployment as augmented intelligence systems that 
enhance human decision-making rather than replace it, with robust safety mechanisms 
and value alignment. 

This phased approach prioritizes safety, interpretability, and alignment by design, rather 
than as afterthoughts. 

5. Conclusion: From Brute Force to Informed Architecture 

The path to AGI need not be paved with ever-larger models consuming exponentially more 
energy. The Evolutionary Processing Unit presents a compelling case that intelligence 
emerges from structure, not just scale. The staggering computational effort of the EPU, 5.5 
× 10^38 brain-FLOPS, is not a blueprint we must replicate in silicon, but a lesson we must 
learn from: that the architecture of intelligence, as embodied in the BPU, is the product of 
a four-billion-year optimization process under severe resource constraints. 

By learning from evolution’s architectural innovations, modularity, plasticity, causal 
grounding, and efficient attention allocation, we can design AI systems that are not only 
more powerful but also more aligned, interpretable, and sustainable. These principles 
suggest that the most promising path forward lies not in scaling alone, but in 
understanding and implementing the structural patterns that billions of years of evolution 
discovered. 

AGI will not be created by brute force alone. It will be engineered through a deeper 
understanding of the process that created us. The future of artificial intelligence lies not in 
the silicon of GPUs, but in the carbon-based wisdom of the BPU, the masterpiece of the 
Evolutionary Processing Unit. 

 



Appendix A: Quantifying the Evolutionary Processing Unit 

The EPU calculation estimates the cumulative computational effort across all human 
BPUs that have ever existed. While this thought experiment necessarily involves 
simplifications, it provides a valid order-of-magnitude comparison for contextualizing 
current AI development efforts. 

A.1 Assumptions 
• Number of humans who have ever lived: 117 billion [10] 
• Processing capacity per brain: ~500 petaFLOPS (5 × 10^17 FLOPS) [1, 2, 3] 
• Average lifespan: ~70 years (2.2 × 10^9 seconds) 
• Processing assumption: Continuous operation (24/7) 

A.2 Calculation 
Cumulative EPU computation =  
  117 × 10^9 humans  
  × 2.2 × 10^9 seconds/lifetime 
  × 5 × 10^17 FLOPS/second 
  ≈ 1.3 × 10^38 brain-FLOPS 

Our stated figure of 5.5 × 10^38 accounts for variation in historical lifespans across 
different eras and demographic uncertainties in pre-modern populations. Some humans 
lived significantly longer than 70 years (especially in recent centuries), while others lived 
much shorter lives. The exact coefficient matters less than the order of magnitude, which 
is approximately 10^38, dwarfing the instantaneous processing rate of current 
supercomputers by about 20 orders of magnitude. To put this cumulative effort into 
perspective, it would take a modern supercomputer thousands of times the current age of 
the universe to match it. 

*Note on continuous processing: The brain processes information continuously, 
including during sleep, when it performs critical functions such as memory consolidation, 
synaptic homeostasis, and metabolic regulation. While waking cognition may involve 
different types of processing, we count all processing to remain conservative in our 
estimate. Using only waking hours (~16 hours/day) would reduce the total by 
approximately 33% but would not change the fundamental conclusion about the scale 
disparity. 

A.3 Limitations and Interpretation 

This is explicitly a thought experiment, not a claim of direct equivalence: 

1. Architectural differences: Neural computation is massively parallel, analog, and 
stochastic, fundamentally different from digital FLOPS. The brain uses temporal 
coding, spike-timing-dependent plasticity, and continuous electrochemical 
dynamics that have no direct silicon analog. 



2. Estimate variance: The 500 petaFLOPS estimate itself varies widely in the literature, 
ranging from 10^15 to 10^18 FLOPS, depending on what is considered 
“computation” [1, 2, 3]. Our choice represents a mid-to-upper-range estimate. 

3. Evolutionary scope: Not all 117 billion humans had modern Homo sapiens brains. 
Earlier hominids and ancestral species are included in demographic estimates but 
had different cognitive architectures. However, this actually strengthens our 
argument: the EPU includes all the evolutionary experimentation that led to the 
modern BPU. 

4. Non-human intelligence: This calculation excludes the computational effort of 
non-human ancestors (early mammals, reptiles, fish, etc.), which would increase 
the EPU total by many additional orders of magnitude. 

A.4 The Key Insight 

The precise number, whether 1.3 × 10^38 or 5.5 × 10^38, is less significant than the 
conceptual point: evolution has conducted a massively parallel search through 
architectural space over four billion years. This search process would take current 
supercomputers billions of years to replicate through brute computational force alone, 
even if we knew precisely what to compute. 

This suggests that attempting to achieve AGI purely through scaling current architectures 
may be akin to trying to out-compute evolution. This strategy has failed to account for the 
20-order-of-magnitude efficiency gap. The more promising path is to understand and 
implement the architectural principles that evolution discovered: modularity, plasticity, 
causal grounding, and efficient resource allocation. 
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